

Motor Active

Chemwatch: 41-9272

Version No: 3.1.1.1

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: 26/06/2014 Print Date: 06/06/2016 Initial Date: Not Available L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	ColorSpec Speed Clear - Part A (ColorSpec Speed Clear - Part A)
Synonyms	Product Code: CSSCA1L
Proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Use according to manufacturer's directions.
	The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating
	atmosphere developing. Before starting consider control of exposure by mechanical ventilation.

Details of the supplier of the safety data sheet

Registered company name	Motor Active
Address	35 Slough Business Park, Holker Street Silverwater NSW 2128 Australia
Telephone	+61 2 9737 9422 1800 350 622
Fax	+61 2 9737 9414
Website	www.motoractive.com.au
Email	andrew.spira@motoractive.com.au

Emergency telephone number

Association / Organisation	MotorActive
Emergency telephone numbers	+61 2 9737 9422 (For General Information Monday to Friday 8:30am to 5:pm)
Other emergency telephone numbers	13 11 26 (In Case of Emergency contact: Poison Information Hotline)

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS

	Min	Max	
Flammability	3		
Toxicity	2		0 – Minimum
Body Contact	3		1 = Low
Reactivity	1		2 = Moderate
Chronic	1	1	4 = Extreme

Poisons Schedule S5

 Classification [1]
 Flammable Liquid Category 2, Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye

 Damage Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Specific target organ toxicity - single exposure Category 3, Acute Aquatic Hazard Category 3

 1, Classified by Chemwatch: 2, Classification drawn from HSIS : 3, Classification drawn from EC Directive 1272/2008 - Annex

Legend:

1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI

Label elements

SIGNAL WORD DANGER

Hazard statement(s)

H225	Highly flammable liquid and vapour.
H332	Harmful if inhaled.
H315	Causes skin irritation.
H318	Causes serious eye damage.
H335	May cause respiratory irritation.
H336	May cause drowsiness or dizziness.
H304	May be fatal if swallowed and enters airways.
H402	Harmful to aquatic life
AUH066	Repeated exposure may cause skin dryness and cracking

Precautionary statement(s) Prevention

P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P240	Ground/bond container and receiving equipment.
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.
P242	Use only non-sparking tools.
P243	Take precautionary measures against static discharge.
P261	Avoid breathing mist/vapours/spray.
P273	Avoid release to the environment.

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P331	Do NOT induce vomiting.
P362	Take off contaminated clothing and wash before reuse.
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam for extinction.
P302+P352	IF ON SKIN: Wash with plenty of soap and water.
P303+P361+P353	IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
P332+P313	If skin irritation occurs: Get medical advice/attention.

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.
P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

P501

Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
123-86-4	10-30	n-butyl acetate
1330-20-7	10-30	xylene
78-83-1	10-30	isobutanol
108-65-6	<10	propylene glycol monomethyl ether acetate, alpha-isomer
64742-95-6.	<1	naphtha petroleum, light aromatic solvent

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	 If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	 If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. Avoid giving milk or oils. Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

Treat symptomatically.

To treat poisoning by the higher aliphatic alcohols (up to C7):

- Gastric lavage with copious amounts of water.
- It may be beneficial to instill 60 ml of mineral oil into the stomach.
- Oxygen and artificial respiration as needed.
- Electrolyte balance: it may be useful to start 500 ml. M/6 sodium bicarbonate intravenously but maintain a cautious and conservative attitude toward electrolyte replacement unless shock or severe acidosis threatens.
- + To protect the liver, maintain carbohydrate intake by intravenous infusions of glucose.
- + Haemodialysis if coma is deep and persistent. [GOSSELIN, SMITH HODGE: Clinical Toxicology of Commercial Products, Ed 5)

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for shock.
- Monitor and treat, where necessary, for pulmonary oedema.
- Anticipate and treat, where necessary, for seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

ADVANCED TREATMENT

- · Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- · Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- + Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- If the patient is hypoglycaemic (decreased or loss of consciousness, tachycardia, pallor, dilated pupils, diaphoresis and/or dextrose strip or glucometer readings below 50 mg), give 50% dextrose.
- + Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Treat seizures with diazepam.
- · Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Acidosis may respond to hyperventilation and bicarbonate therapy.
- Haemodialysis might be considered in patients with severe intoxication.
- Consult a toxicologist as necessary. BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For C8 alcohols and above.

Symptomatic and supportive therapy is advised in managing patients.

For acute or short term repeated exposures to xylene:

- Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- Pulmonary absorption is rapid with about 60-65% retained at rest.
- Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice. BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant	Index	Sampling Time	Comments
Methylhippu-ric acids in urine	1.5 gm/gm creatinine	End of shift	
	2 mg/min	Last 4 hrs of shift	

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- Alcohol stable foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

Do not use a water jet to fight fire.

Special hazards arising from the substrate or mixture

Eiro Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may
The incompatibility	result

Advice for firefighters

Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves in the event of a fire. Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). Fight fire from a safe distance, with adequate cover. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control the fire and cool adjacent area. Avoid spraying water onto liquid pools. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
Fire/Explosion Hazard	 Liquid and vapour are highly flammable. Severe fire hazard when exposed to heat, flame and/or oxidisers. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition leading to violent rupture of containers. On combustion, may emit toxic fumes of carbon monoxide (CO). Combustion products include: Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions, carbon dioxide (CO2) other pyrolysis products typical of burning organic material carbon dioxide (CO2) other pyrolysis products typical of burning organic material

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minor Spills	 Remove all ignitio Clean up all spills Avoid breathing value Control personal of Contain and absorbed Wipe up. Collect residues in 	n sources. immediately. apours and cor contact with the rb small quantit	ntact with skin and e substance, by us ties with vermiculite waste container.	eyes. ing prot e or othe	ect er a	tive equipn absorbent	nent. material.	
	Chemical Class: este For release onto land	r and ethers d: recommende	d sorbents listed ir	n order o	of p	priority.		
	SORBENT TYPE	RANK	APPLICATION			COLLE	CTION	LIMITATIONS
	LAND SPILL - SMAL	L						
	cross-linked polymer	r - particulate		1		shovel	shovel	R, W, SS
	cross-linked polymer	r - pillow		1		throw	pitchfork	R, DGC, RT
	sorbent clay - particu	ulate		2	2	shovel	shovel	R,I, P
	wood fiber - particula	ate		3		shovel	shovel	R, W, P, DGC
	wood fiber - pillow			3	1	throw	pitchfork	R, P, DGC, RT
	treated wood fiber - p	oillow		3	1	throw	pitchfork	DGC, RT
	LAND SPILL - MEDI	UM						
Major Spills	cross-linked polymer	r - particulate		1	b	olower	skiploader	R,W, SS
	cross-linked polyme	r - pillow		2	tl	hrow	skiploader	R, DGC, RT
	sorbent clay - particu	ulate		3	b	olower	skiploader	R, I, P
	polypropylene - parti	culate		3	b	olower	skiploader	W, SS, DGC
	expanded mineral - p	particulate		4	b	olower	skiploader	R, I, W, P, DGC
	wood fiber - particula	ate		4	b	olower	skiploader	R, W, P, DGC
	Legend DGC: Not effective w R; Not reusable I: Not incinerable P: Effectiveness redu RT:Not effective wher SS: Not for use within W: Effectiveness redu	here ground co loced when rain re terrain is rug n environmenta luced when win	over is dense y ged ally sensitive sites dy					

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

 Clear area of personnel and move upwind. • Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. • Wear breathing apparatus plus protective gloves. • Prevent, by any means available, spillage from entering drains or water course. Consider evacuation (or protect in place). • No smoking, naked lights or ignition sources. ► Increase ventilation. ▶ Stop leak if safe to do so. • Water spray or fog may be used to disperse /absorb vapour. • Contain spill with sand, earth or vermiculite. • Use only spark-free shovels and explosion proof equipment. · Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. • Wash area and prevent runoff into drains. + If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling	 Containers, even those that have been emptied, may contain explosive vapours. b NOT cut, drill, grind, weld or perform similar operations on or near containers. Contains low boiling substance: Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately. Check for bulging containers. Vent periodically Always release caps or seals slowly to ensure slow dissipation of vapours DO NOT allow clothing wet with material to stay in contact with skin Electrostatic discharge may be generated during pumping - this may result in fire. Ensure electrical continuity by bonding and grounding (earthing) all equipment. Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec). Avoid splash filling. Do NOT use compressed air for filling discharging or handling operations. Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT elat, drink or smoke. Vapour may ignite on pumping or pouring due to static electricity. DO NOT use plastic buckets. Earth and secure metal containers when dispensing or pouring product. Use spark-free tools when handling. Avoid ontainers securely sealed. Avoid physical damage to containers. Avoid physical damage to containers. Avoid physical damage to containers. Away sansh hands with scap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS.
	 Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
Other information	 Store in original containers in approved flame-proof area. No smoking, naked lights, heat or ignition sources. DO NOT store in pits, depressions, basements or areas where vapours may be trapped. Keep containers securely sealed. Store away from incompatible materials in a cool, dry well ventilated area. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

	 Packing as supplied by manufacturer. Plastic containers may only be used if approved for flammable liquid.
Suitable container	 Check that containers are clearly labelled and free from leaks. For low viscosity materials (i) : Drums and jerry cans must be of the non-removable head type. (ii) : Where a can is to be

	 used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C) For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.
Storage incompatibility	 Avoid strong acids, bases. Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	n-butyl acetate	n-Butyl acetate	713 mg/m3 / 150 ppm	950 mg/m3 / 200 ppm	Not Available	Not Available
Australia Exposure Standards	xylene	Xylene (o-, m-, p- isomers)	350 mg/m3 / 80 ppm	655 mg/m3 / 150 ppm	Not Available	Not Available
Australia Exposure Standards	isobutanol	Isobutyl alcohol	152 mg/m3 / 50 ppm	Not Available	Not Available	Not Available
Australia Exposure Standards	propylene glycol monomethyl ether acetate, alpha-isomer	1-Methoxy- 2-propanol acetate	274 mg/m3 / 50 ppm	548 mg/m3 / 100 ppm	Not Available	Sk

EMERGENCY LIMITS

Ingredient	Material name		TEEL-1	TEEL-2	TEEL-3
n-butyl acetate	Butyl acetate, n-			Not Available	Not Available
xylene	Xylenes			Not Available	Not Available
isobutanol	Isobutyl alcohol		150 ppm	1300 ppm	8000 ppm
propylene glycol monomethyl ether acetate, alpha-isomer	Propylene glycol monomethyl ether acetate, alpha-isomer; (1-Methoxypropyl- 2-acetate)			Not Available	Not Available
propylene glycol monomethyl ether acetate, alpha-isomer	Propylene glycol monomethyl ether acetate, beta-isomer; (2-Methoxypropoyl- 1-acetate)			Not Available	Not Available
naphtha petroleum, light aromatic solvent	Aromatic hydrocarbon solvents; (High flash naphtha distillates; naphtha (petroleum), light aromatic)	Solvent	3.1 ppm	34 ppm	410 ppm
In our discus					
Ingredient	Original IDLH	Revised IDLH			
n-butyl acetate	10,000 ppm	1,700 [LEL] ppm			
xylene	1,000 ppm 5	900 ppm			
isobutanol	8,000 ppm 1,600 ppm				
propylene glycol monomethyl ether acetate, alpha-isomer	Not Available	Not Available			
naphtha petroleum, light					

aromatic solvent MATERIAL DATA

For trimethyl benzene as mixed isomers (of unstated proportions)

Not Available

Odour Threshold Value: 2.4 ppm (detection)

Use care in interpreting effects as a single isomer or other isomer mix. Trimethylbenzene is an eye, nose and respiratory irritant. High concentrations cause central nervous system depression. Exposed workers show CNS changes, asthmatic bronchitis and blood dyscrasias at 60 ppm. The TLV-TWA is thought to be protective against the significant risk of CNS excitation, asthmatic bronchitis and blood dyscrasias associated with exposures above the limit.

Not Available

OSF=10 (1,2,4-TRIMETHYLBENZENE)

For n-butyl acetate

Odour Threshold Value: 0.0063 ppm (detection), 0.038-12 ppm (recognition)

Exposure at or below the recommended TLV-TWA is thought to prevent significant irritation of the eyes and respiratory passages as well as narcotic effects. In light of the lack of substantive evidence regarding teratogenicity and a review of acute oral data a STEL is considered inappropriate. Odour Safety Factor(OSF)

OSF=3.8E2 (n-BUTYL ACETATE)

for propylene glycol monomethyl ether acetate (PGMEA)

Saturated vapour concentration: 4868 ppm at 20 C.

A two-week inhalation study found nasal effects to the nasal mucosa in animals at concentrations up to 3000 ppm. Differences in the teratogenic potential of the alpha (commercial grade) and beta isomers of PGMEA may be explained by the formation of different metabolites. The beta-isomer is thought to be oxidised to methoxypropionic acid, a homologue to methoxyacetic acid which is a known teratogen. The alpha- form is conjugated and excreted. PGMEA mixture (containing 2% to 5% beta isomer) is a mild skin and eye irritant, produces mild central nervous system effects in animals at 3000 ppm and produces mild CNS impairment and upper respiratory tract and eye irritation in humans at 1000 ppm. In rats exposed to 3000 ppm. PGMEA produced slight foetotoxic effects (delayed sternabral ossification) - no effects on foetal development were seen in rabbits exposed at 3000 ppm.

Exposed individuals are NOT reasonably expected to be warned, by smell, that the Exposure Standard is being exceeded.

Odour Safety Factor (OSF) is determined to fall into either Class C, D or E.

The Odour Safety Factor (OSF) is defined as:

OSF= Exposure Standard (TWA) ppm/ Odour Threshold Value (OTV) ppm

Classification into classes follows:

ClassOSF Description

- A 550 Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by working activities
- B 26-550As "A" for 50-90% of persons being distracted
- C 1-26 As "A" for less than 50% of persons being distracted
- D 0.18-1 10-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached
- E <0.18 As "D" for less than 10% of persons aware of being tested

for xylenes:

IDLH Level: 900 ppm

Odour Threshold Value: 20 ppm (detection), 40 ppm (recognition)

NOTE: Detector tubes for o-xylene, measuring in excess of 10 ppm, are available commercially. (m-xylene and p-xylene give almost the same response).

Xylene vapour is an irritant to the eyes, mucous membranes and skin and causes narcosis at high concentrations. Exposure to doses sufficiently high to produce intoxication and unconsciousness also produces transient liver and kidney toxicity. Neurologic impairment is NOT evident amongst volunteers inhaling up to 400 ppm though complaints of ocular and upper respiratory tract irritation occur at 200 ppm for 3 to 5 minutes.

Exposure to xylene at or below the recommended TLV-TWA and STEL is thought to minimise the risk of irritant effects and to produce neither significant narcosis or chronic injury. An earlier skin notation was deleted because percutaneous absorption is gradual and protracted and does not substantially contribute to the dose received by inhalation.

Odour Safety Factor(OSF) OSF=4 (XYLENE)

For isobutanol:

Odour Threshold Value: 0.66-40 ppm (detection), 1.8-53 ppm (recognition) Although there do not appear to be reports of isobutyl alcohol causing auditory impairment or vestibular damage in humans (as with n-butanol) the recommended TLV-TWA recognises the slightly greater acute toxic potential of isobutanol versus n-butanol. Exposure at or below this limit is thought to significantly reduce the risk of skin irritation. Odour Safety Factor (OSF)

OSF=31 (ISOBUTYL ALCOHOL)

NOTE M: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.005% w/w benzo[a]pyrene (EINECS No 200-028-5). This note applies only to certain complex oil-derived substances in Annex IV.

European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI.

European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

	Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed
Annuanuiata	engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to
Appropriate	provide this high level of protection.
engineering controls	The basic types of engineering controls are:

	 Process controls which involve changing the way a job activity of process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the work ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dill contaminant if designed properly. The design of a ventilation system must match the particular process and contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation sy required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the velocities" of fresh circulating air required to effectively remove the contaminant. 		
	Type of Contaminant:		Air Speed:
	solvent, vapours, degreasing etc., evaporating from tank (in still air).		0.25-0.5 m/s (50-100 f/min.)
	aerosols, fumes from pouring operations, intermittent container filling, low spee welding, spray drift, plating acid fumes, pickling (released at low velocity into zo	d conveyer transfers, one of active generation)	0.5-1 m/s (100-200 f/min.)
	direct spray, spray painting in shallow booths, drum filling, conveyer loading, cr (active generation into zone of rapid air motion)	usher dusts, gas discharge	1-2.5 m/s (200-500 f/min.)
	Within each range the appropriate value depends on:		
	Lower end of the range	Upper end of the range	
	1: Room air currents minimal or favourable to capture	1: Disturbing room air current	S
	2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxic	city
	3: Intermittent, low production.	3: High production, heavy us	e
	4: Large hood or large air mass in motion	4: Small hood-local control or	ıly
	extraction point should be adjusted, accordingly, after reference to distance from at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/n tank 2 meters distant from the extraction point. Other mechanical considerations extraction apparatus, make it essential that theoretical air velocities are multiplie systems are installed or used.	the contaminating source. Th hin.) for extraction of solvents , producing performance defic d by factors of 10 or more who	e air velocity generated in a its within the en extraction
Personal protection			
Eye and face protection	 Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb a document, describing the wearing of lenses or restrictions on use, should be include a review of lens absorption and adsorption for the class of chemicals Medical and first-aid personnel should be trained in their removal and suitable event of chemical exposure, begin eye irrigation immediately and remove co be removed at the first signs of eye redness or irritation - lens should be rem workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Be equivalent] 	and concentrate irritants. A wri created for each workplace or in use and an account of injui e equipment should be readily a ntact lens as soon as practica noved in a clean environment ulletin 59], [AS/NZS 1336 or na	tten policy task. This should y experience. available. In the ble. Lens should only after ational
Skin protection	See Hand protection below		
Hands/feet protection	 Wear chemical protective gloves, e.g. PVC. Wear safety footwear or safety gumboots, e.g. Rubber For esters: Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing matched the selection of suitable gloves does not only depend on the material, but also manufacturer to manufacturer. Where the chemical is a preparation of several s material can not be calculated in advance and has therefore to be checked prior The exact break through time for substances has to be obtained from the manube observed when making a final choice. Suitability and durability of glove type is dependent on usage. Important factors frequency and duration of contact, chemical resistance of glove material, glove thickness and dexterity 	aterials. on further marks of quality wh ubstances, the resistance of t to the application. facturer of the protective glove in the selection of gloves incl	ich vary from he glove 25 and.has to ude:

	 Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
Body protection	See Other protection below
Other protection	 Overalls. PVC Apron. PVC protective suit may be required if exposure severe. Eyewash unit. Ensure there is ready access to a safety shower. Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.
Thermal hazards	Not Available

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

ColorSpec Speed Clear - Part A (ColorSpec Speed Clear - Part A)

Material	CPI
BUTYL	В
BUTYL/NEOPRENE	В
NITRILE+PVC	В
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NITRILE	С
PVC	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion
C: Poor to Dangerous Choice for other than short term immersion
NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. * Where the glove is to be used on a short term, casual or infrequent

basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	28pge Clear viscous liquid with a strong solvent odour.			
Physical state	Liquid	Relative density (Water = 1)	0.90-1.00	

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS / Class 1	-	A-PAPR-AUS / Class 1
up to 50 x ES	Air-line*	-	-
up to 100 x ES	-	A-3	-
100+ x ES	-	Air-line**	-

* - Continuous-flow; ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	96-145	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	22 (OC)	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	10.9	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	1	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	1.2 @20C	Gas group	Not Available
Solubility in water (g/L)	Not Available	pH as a solution (1%)	Not Applicable
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Presence of heat source and ignition source Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. The acute toxicity of inhaled alkylbenzenes is best described by central nervous system depression. As a rule, these compounds may also act as general anaesthetics. Systemic poisoning produced by general anaesthetics. Systemic poisoning produced by general anaesthetics. Systemic poisoning the cardiac arrest may result from cardiovascular collapse. Bradycardia, and hypotension may also be produced. Inhaled alkylbenzene vapours cause death in animals at air levels that are relatively similar (typically LC50s are in the range 5000 -8000 pm for 4 to 8 hour exposures). It is likely that acute inhalation exposure to alkylbenzenes resembles that to general anaesthetics. Alkylbenzenes are ong generally toxic other than at high levels of exposure. This may be because their metabolites have a low order of toxicity and are easily excreted. There is little or no evidence to suggest that metabolic pathways can become saturated leading to spillover to alternate pathways. Nor is there evidence that toxic reactive intermediates, which may produce subsequent toxic or mutagenic effects, are formed Exposure to alighatic alcohols with more than 3 carb

	dizziness, drowsiness, muscle weakness, delirium, CNS depression, coma, seizure, and neurobehavioural changes. Symptoms are more acute with higher alcohols. Respiratory tract involvement may produce irritation of the mucosa, respiratory insufficiency, respiratory depression secondary to CNS depression, pulmonary oedema, chemical pneumonitis and bronchitis. Cardiovascular involvement may result in arrhythmias and hypotension. Gastrointestinal effects may include nausea and vomiting. Kidney and liver damage may result following massive exposures. The alcohols are potential irritants being, generally, stronger irritants than similar organic structures that lack functional groups (e.g. alkanes) but are much less irritating than the corresponding amines, aldehydes or ketones. Alcohols and glycols (diols) rarely represent serious hazards in the workplace, because their vapour concentrations are usually less than the levels which produce significant irritation which, in turn, produce significant central nervous system effects as well. Inhalation hazard is increased at higher temperatures. Isobutanol appears to be more toxic than n-butyl alcohol. A 4-hour inhalation exposure of rats at 8000 ppm resulted in deaths. Mice exposed at 2125 ppm isobutyl alcohol for 223 hours in a series of intermittent exposures, each lasting 9.25 hours did not show signs of toxic injury. In a second study mice were narcotised repeatedly following a series of intermittent exposures that totalled 136 hours at a concentration of 6400 ppm - no mortalities were recorded. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination Mice exposed at up to 3000 ppm PGMEA 6 hr/day for a total of 9 days during an 11-day period showed no pronounced effect on the weights of liver, kidneys, heart, spleen, thymus or testes. Histopathological examination revealed
Ingestion	Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. Accidental ingestion of the material may be damaging to the health of the individual. Following a single dose of isobutanol in rats, deaths were delayed for several days and hepatic degeneration was evident. Considered an unlikely route of entry in commercial/industrial environments The liquid may produce considerable gastrointestinal discomfort and may be harmful or toxic if swallowed. Ingestion may result in nausea, pain and vomiting.
Skin Contact	 The material produces moderate skin irritation; evidence exists, or practical experience predicts, that the material either produces moderate inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Application of isobutanol to human skin produced slight erythema and hyperaemia. Repeated application of commercial grade PGMEA to the skin of rabbits for 2-weeks caused slight redness and very slight exfoliation. Open cuts, abraded or irritated skin should not be exposed to this material Skin contact with the material may be harmful; systemic effects may result following absorption.
Eye	When applied to the eye(s) of animals, the material produces severe ocular lesions which are present twenty-four hours or more after instillation. Instillation of isobutanol into a rabbit's eye caused moderate to severe irritation but no permanent injury to the cornea. No evidence of irritation was found when human volunteers were exposed to repeated 8 hour exposures to 100 ppm vapour. Undiluted propylene glycol monomethyl ether acetate (PGMEA) causes moderate discomfort, slight conjunctival redness and slight corneal injury in rabbits
Chronic	Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects. Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects. . Three out of 19 rats dosed orally with 0.2 ml isobutanol developed either forestomach carcinomas, lever cell carcinoma or

myelogenous leukaemia and benign tumours were more prevalent than those found in a control group of animals Repeated exposure to higher concentrations of propylene glycol monomethyl ether acetate (PGMEA) (1000 ppm and above) causes mild liver and kidney damage in animals.

A minor component, 2-methoxy-1-propyl acetate (the beta-isomer) produced birth defects on inhalation exposure of pregnant rabbits at 545 ppm, but not at 145 or 36 ppm; maternal and embryo/foetal toxicity on inhalation exposure of pregnant rats at 2710 ppm, but not at 545 or 110 ppm; and no adverse effects on dermal exposure of pregnant rabbits at applied dosages of 1000 and 2000 mg/kg of body weight per day during the critical period or embryo/foetal development. In a further study, no developmental effects were seen following exposure of pregnant rats at air concentrations of commercial propylene glycol monomethyl ether acetate (containing 3-5% of the minor component) up to 4000 ppm; slight maternal effects were seen at 5000 ppm and greater.

Exposure of pregnant rats and rabbits to the parent glycol ether, propylene glycol monomethyl ether which contained comparable amounts of the primary isomer, 2-methoxy-1-propanol, did not produce teratogenic effects at concentrations up to 3000 ppm. Foetotoxic effects were seen in rat foetuses but not in rabbit foetuses at this concentration and maternal toxicity was noted in both species at this concentration

Prolonged or repeated contact with xylenes may cause defatting dermatitis with drying and cracking. Chronic inhalation of xylenes has been associated with central nervous system effects, loss of appetite, nausea, ringing in the ears, irritability, thirst anaemia, mucosal bleeding, enlarged liver and hyperplasia. Exposure may produce kidney and liver damage. In chronic occupational exposure, xylene (usually mix ed with other solvents) has produced irreversible damage to the central nervous system and ototoxicity (damages hearing and increases sensitivity to noise), probably due to neurotoxic mechanisms. Industrial workers exposed to xylene with a maximum level of ethyl benzene of 0.06 mg/l (14 ppm) reported headaches and irritability and tired quickly. Functional nervous system disturbances were found in some workers employed for over 7 years whilst other workers had enlarged livers.

Xylene has been classed as a developmental toxin in some jurisdictions.

Small excess risks of spontaneous abortion and congenital malformation were reported amongst women exposed to xylene in the first trimester of pregnancy. In all cases, however, the women were also been exposed to other substances. Evaluation of workers chronically exposed to xylene has demonstrated lack of genotoxicity. Exposure to xylene has been associated with increased risks of haemopoietic malignancies but, again, simultaneous exposure to other substances (including benzene) complicates the picture. A long-term gavage study to mixed xylenes (containing 17% ethyl benzene) found no evidence of carcinogenic activity in rats and mice of either sex.

Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

ColorSpec Speed Clear - Part A	ΤΟΧΙΟΙΤΥ	IRRITATION
(ColorSpec Speed Clear - Part A)	Not Available	Not Available
	ΤΟΧΙΟΙΤΥ	IRRITATION
	Dermal (rabbit) LD50: >14080 mg/kg ^[1]	* [PPG]
	Inhalation (rat) LC50: 2000 ppm/4Hg ^[2]	Eye (human): 300 mg
n-butyl acetate	Inhalation (rat) LC50: 390 ppm/4h ^[2]	Eye (rabbit): 20 mg (open)-SEVERE
	Oral (rat) LD50: 10736 mg/kg ^[1]	Eye (rabbit): 20 mg/24h - moderate
		Skin (rabbit): 500 mg/24h-moderate
	ΤΟΧΙΟΙΤΥ	IRRITATION
	Dermal (rabbit) LD50: >1700 mg/kg ^[2]	Eye (human): 200 ppm irritant
xylene	Inhalation (rat) LC50: 5000 ppm/4h ^[2]	Eye (rabbit): 5 mg/24h SEVERE
	Oral (rat) LD50: 4300 mg/kgt ^[2]	Eye (rabbit): 87 mg mild
		Skin (rabbit):500 mg/24h moderate
	ΤΟΧΙΟΙΤΥ	IRRITATION
	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye (rabbit): 2 20 mg/24h-moderate
isobutanol	Inhalation (rat) LC50: 19.2 mg/L/4H ^[2]	Eye (rabbit): 2 mg/24h - SEVERE
	Oral (rat) LD50: 2460 mg/kg.E ^[2]	Skin (rabbit): mg (open)-SEVERE
	ΤΟΧΙΟΙΤΥ	IRRITATION
propylene glycol	dermal (rat) LD50: >2000 mg/kg ^[1]	* [CCINFO]
monomethyl ether acetate, alpha-isomer	Inhalation (rat) LC50: 4345 ppm/6h ^[2]	Nil reported
	Oral (rat) LD50: >14.1 ml ^[1]	
	тохісіту	IRRITATION
naphtha petroleum,	Dermal (rabbit) LD50: >1900 mg/kg ^[1]	Nil reported
light aromatic solvent	Inhalation (rat) LC50: >3670 ppm/8 h * ^[2]	

Oral (rat) LD50: >4500 mg/kg^[1]

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

and death. Indicators of adverse reproductive system effects included reduced litter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established Developmental toxicity, including possible developmental neurotoxicity, was evident in rats in a 3-generation reproductive study

No effects on fecundity or fertility occurred in rats treated dermally with up to 0.3 mL/rat/day of a mixture of trimethyl-

benzenes, 4-6 hours/day, 5 days/week over one generation For C9 aromatics (typically trimethylbenzenes - TMBs)

Acute Toxicity

Acute toxicity studies (oral, dermal and inhalation routes of exposure) have been conducted in rats using various solvent products containing predominantly mixed C9 aromatic hydrocarbons (CAS RN 64742-95-6). Inhalation LC50's range from 6,000 to 10,000 mg/m 3 for C9 aromatic naphtha and 18,000 to 24,000 mg/m3 for 1,2,4 and 1,3,5-TMB, respectively. A rat oral LD50 reported for 1,2,4-TMB is 5 grams/kg bw and a rat dermal LD50 for the C9 aromatic naphtha is >4 ml/kg bw. These data indicate that C9 aromatic solvents show that LD50/LC50 values are greater than limit doses for acute toxicity studies established under OECD test guidelines.

Irritation and Sensitization

Several irritation studies, including skin, eye, and lung/respiratory system, have been conducted on members of the category. The results indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the respiratory tract and cause depression of respiratory rates in mice. Respiratory irritation is a key endpoint in the current occupational exposure limits established for C9 aromatic hydrocarbon solvents and trimethylbenzenes. No evidence of skin sensitization was identified.

Repeated Dose Toxicity

Inhalation: The results from a subchronic (3 month) neurotoxicity study and a one-year chronic study (6 hr/day, 5 days/week) indicate that effects from inhalation exposure to C9 Aromatic Hydrocarbon Solvents on systemic toxicity are slight. A battery of neurotoxicity and neurobehavioral endpoints were evaluated in the 3-month inhalation study on C9 aromatic naphtha tested at concentrations of 0, 101, 452, or 1320 ppm (0, 500, 2,220, or 6,500 mg/m3). In this study, other than a transient weight reduction in the high exposure group (not statistically significant at termination of exposures), no effects were reported on neuropathology or neuro/behavioral parameters. The NOAEL for systemic and/or neurotoxicity was 6,500 mg/m3, the highest concentration tested. In an inhalation study of a commercial blend, rats were exposed to C9 aromatic naphtha concentrations of 0, 96, 198, or 373 ppm (0, 470, 970, 1830 mg/m3) for 6 hr/day, 5 days/week, for 12 months. Liver and kidney weights were increased in the high exposure group but no accompanying histopathology was observed in these organs.

The NOAEL was considered to be the high exposure level of 373 ppm, or 1830 mg/m3. In two subchronic rat inhalation studies, both of three months duration, rats were exposed to the individual TMB isomers (1,2,4-and 1,3,5-) to nominal concentrations of 0, 25, 100, or 250 ppm (0, 123, 492, or 1230 mg/m3). Respiratory irritation was observed at 492 (100 ppm) and 1230 mg/m3 (250 ppm) and no systemic toxicity was observed in either study. For both pure isomers, the NOELs are 25 ppm or 123 mg/m3 for respiratory irritation and 250 ppm or 1230 mg/m3 for systemic effects.

Oral: The C9 aromatic naphtha has not been tested via the oral route of exposure. Individual TMB isomers have been evaluated in a series of repeated-dose oral studies ranging from 14 days to 3 months over a wide range of doses. The effects observed in these studies included increased liver and kidney weights, changes in blood chemistry, increased salivation, and decreased weight gain at higher doses. Organ weight changes appeared to be adaptive as they were not accompanied by histopathological effects. Blood changes appeared sporadic and without pattern. One study reported hyaline droplet nephropathy in male rats at the highest dose (1000 mg/kg bw-day), an effect that is often associated with alpha-2mu-globulin-induced nephropathy and not considered relevant to humans. The doses at which effects were detected were 100 mg/kg-bw day or above (an exception was the pilot 14 day oral study - LOAEL 150 mg/kg bw-day - but the follow up three month study had a LOAEL of 600 mg/kg/bw-day with a NOAEL of 200 mg/kg bw-day). Since effects generally were not severe and could be considered adaptive or spurious, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers.

Mutagenicity

In vitro genotoxicity testing of a variety of C9 aromatics has been conducted in both bacterial and mammalian cells. In vitro point mutation tests were conducted with Salmonella typhimurium and Escherichia coli bacterial strains, as well as with cultured mammalian cells such as the Chinese hamster cell ovary cells (HGPRT assay) with and without metabolic activation. In addition, several types of in vitro chromosomal aberration tests have been performed (chromosome aberration frequency in Chinese hamster ovary and lung cells, sister chromatid exchange in CHO cells). Results were negative both with and without metabolic activation for all category members. For the supporting chemical 1,2,3-TMB, a single in vitro chromosome aberration test was weakly positive. In in vivo bone marrow cytogenetics test, rats were exposed to C9 aromatic naphtha at concentrations of 0, 153, 471, or 1540 ppm (0, 750, 2,310, or 7,560 mg/m3) 6 hr/day, for 5 days. No evidence of in vivo somatic cell genotoxicity was detected. Based on the cumulative results of these assays, genetic toxicity is unlikely for substances in the C9 Aromatic Hydrocarbon Solvents Category

Reproductive and Developmental Toxicity

Results from the three-generation reproduction inhalation study in rats indicate limited effects from C9 aromatic naphtha. In each of three generations (F0, F1 and F2), rats were exposed to High Flash Aromatic Naphtha (CAS RN 64742-95-6) via whole body inhalation at target concentrations of 0, 100, 500, or 1500 ppm (actual mean concentrations throughout the full study period were 0, 103, 495, or 1480 ppm, equivalent to 0, 505, 2430, or 7265 mg/m3, respectively). In each generation, both sexes were exposed for 10 weeks prior to and two weeks during mating for 6 hrs/day, 5 days/wks. Female rats in the F0, F1, and F2 generation were then exposed during gestation days 0-20 and lactation days 5-21 for 6 hrs/day, 7 days/wk. The age at exposure initiation differed among generations; F0 rats were exposed starting at 9 weeks of age, F1 exposure began at 5-7 weeks, and F2 exposure began at postnatal day (PND) 22. In the F0 and F1 parental generations, 30 rats/sex /group were exposed and mated. However, in the F2 generation, 40/sex/group were initially exposed due to concerns for toxicity, and 30/sex/group were randomly selected for mating, except that all survivors were used at 1480 ppm. F3 litters were not exposed directly and were sacrificed on lactation day 21.

Systemic Effects on Parental Generations:

The F0 males showed statistically and biologically significantly decreased mean body weight by ~15% at 1480 ppm when compared with controls. Seven females died or were sacrificed in extremis at 1480 ppm. The F0 female rats in the 495 ppm exposed group had a 13% decrease in body weight gain when adjusted for initial body weight when compared to controls. The F1 parents at 1480 ppm had statistically significantly decreased mean body weights (by ~13% (females) and 22% (males)), and locomotor activity. F1 parents at 1480 ppm had increased ataxia and mortality (six females). Most F2 parents (70/80) exposed to 1480 ppm died within the first week. The remaining animals survived throughout the rest of the exposure period.

At week 4 and continuing through the study, F2 parents at 1480 ppm had statistically significant mean body weights much lower than controls (~33% for males; ~28% for females); body weights at 495 ppm were also reduced significantly (by 13% in males and 15% in females). The male rats in the 495 ppm exposed group had a 12% decrease in body weight gain when adjusted for initial body weight when compared to controls. Based on reduced body weight observed, the overall systemic toxicity LOAEC is 495 ppm (2430 mg/m3).

Reproductive Toxicity-Effects on Parental Generations: There were no pathological changes noted in the reproductive organs of any animal of the F0, F1, or F2 generation. No effects were reported on sperm morphology, gestational period, number of implantation sites, or post-implantation loss in any generation. Also, there were no statistically or biologically significant differences in any of the reproductive parameters, including: number of mated females, copulatory index, copulatory interval, number of females delivering a litter, number of females delivering a live litter, or male fertility in the F0 or in the F2 generation. Male fertility was statistically significantly reduced at 1480 ppm in the F1 rats. However, male fertility was not affected in the F0 or in the F2 generations; therefore, the biological significance of this change is unknown and may or may not be attributed to the test substance. No reproductive effects were observed in the F0 or F1 dams exposed to 1480 ppm (7265 mg/m3). Due to excessive mortality at the highest concentration (1480 ppm, only six dams available) in the F2 generation., a complete evaluation is precluded. However, no clear signs of reproductive toxicity were observed in the F2 generation. Therefore, the reproductive NOAEC is considered 495 ppm (2430 mg/m3), which excludes analysis of the highest concentration due to excessive mortality.

Developmental Toxicity - Effects on Pups: Because of significant maternal toxicity (including mortality) in dams in all generations at the highest concentration (1480 ppm), effects in offspring at 1480 ppm are not reported here. No significant effects were observed in the F1 and F2 generation offspring at 103 or 495 ppm. However, in F3 offspring, body weights and body weight gain were reduced by ~ 10-11% compared with controls at 495 ppm for approximately a week (PND 14 through 21). Maternal body weight was also depressed by ~ 12% throughout the gestational period compared with controls. The overall developmental LOAEC from this study is 495 ppm (2430 mg/m3) based on the body weights reductions observed in the F3 offspring.

Conclusion: No effects on reproductive parameters were observed at any exposure concentration, although a confident assessment of the group exposed at the highest concentration was not possible. A potential developmental effect (reduction in mean pup weight and weight gain) was observed at a concentration that was also associated with maternal toxicity.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. for propylene glycol ethers (PGEs):

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM).

Testing of a wide variety of propylene glycol ethers Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with the lower molecular weight homologues of the ethylene series, such as adverse effects on reproductive organs, the developing embryo and fetus, blood (haemolytic effects), or thymus, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces an alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids.

Longer chain length homologues in the ethylene series are not associated with the reproductive toxicity but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (thermodynamically favored during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects).

This alpha isomer comprises greater than 95% of the isomeric mixture in the commercial product.

Because the alpha isomer cannot form an alkoxypropionic acid, this is the most likely reason for the lack of toxicity shown by the PGEs as distinct from the lower molecular weight ethylene glycol ethers. More importantly, however, very extensive empirical test data show that this class of commercial-grade glycol ether presents a low toxicity hazard. PGEs, whether mono, di- or tripropylene glycol-based (and no matter what the alcohol group), show a very similar pattern of low to non-detectable toxicity of any type at doses or exposure levels greatly exceeding those showing pronounced effects from the ethylene series. One of the primary metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolised in the body.

As a class, the propylene glycol ethers are rapidly absorbed and distributed throughout the body when introduced by inhalation or oral exposure. Dermal absorption is somewhat slower but subsequent distribution is rapid. Most excretion for PGEs is via the urine and expired air. A small portion is excreted in the faeces.

As a group PGEs exhibits low acute toxicity by the oral, dermal, and inhalation routes. Rat oral LD50s range from >3,000 mg/kg (PnB) to >5,000 mg/kg (DPMA). Dermal LD50s are all > 2,000 mg/kg (PnB, & DPnB; where no deaths occurred), and ranging up to >15,000 mg/kg (TPM). Inhalation LC50 values were higher than 5,000 mg/m3 for DPMA (4-hour exposure), and TPM (1-hour exposure). For DPnB the 4-hour LC50 is >2,040 mg/m3. For PnB, the 4-hour LC50 was >651 ppm (>3,412 mg/m3), representing the highest practically attainable vapor level. No deaths occurred at these concentrations. PnB and TPM are moderately irritating to eyes while the remaining category members are only slightly irritating to nonirritating. PnB is moderately irritating to skin while the remaining category members are slightly to non-irritating None are skin sensitisers.

In repeated dose studies ranging in duration from 2 to 13 weeks, few adverse effects were found even at high exposure levels and effects that did occur were mild in nature. By the oral route of administration, NOAELs of 350 mg/kg-d (PnB – 13 wk) and 450 mg/kg-d (DPnB – 13 wk) were observed for liver and kidney weight increases (without accompanying histopathology). LOAELs for these two chemicals were 1000 mg/kg-d (highest dose tested).

Dermal repeated-dose toxicity tests have been performed for many PGEs. For PnB, no effects were seen in a 13-wk study

	at doses as high as 1,000 mg/kg-d. A dose of 273 mg/kg-d constituted a LOAEL (increased organ weights without histopathology) in a 13-week dermal study for DPnB. For TPM, increased kidney weights (no histopathology) and transiently decreased body weights were found at a dose of 2,895 mg/kg-d in a 90-day study in rabbits. By inhalation, no effects were observed in 2-week studies in rats at the highest tested concentrations of 3244 mg/m3 (600 ppm) for PnB and 2,010 mg/m3 (260 ppm) for DPnB. TPM caused increased liver weights without histopathology by inhalation in a 2-week study at a LOAEL of 360 mg/m3 (43 ppm). In this study, the highest tested TPM concentration, 1010 mg/m3 (120 ppm), also caused increased liver weights without accompanying histopathology. Although no repeated-dose studies are available for the oral route for TPM, or for any route for DPMA, it is anticipated that these chemicals would behave similarly to other category members. One and two-generation reproductive toxicity testing has been conducted in mice, rats, and rabbits via the oral or inhalation routes of exposure on PM and PMA. In an inhalation rat study using PM, the NOAEL for parental toxicity is 300 ppm (1106 mg/m3) with decreased body weights occurring at 3000 ppm (11058 mg/m3). For PMA, the NOAEL is 1000 ppm (3686 mg/m3), with decreased body weights occurring at 3000 ppm (11058 mg/m3). For PMA, the NOAEL is parental and offspring toxicity is 1000 mg/kg/d. In a two generation gavage study in rats. No adverse effects were found on reproductive organs, fertility rates, or other indices commonly monitored in such studies. In addition, there is no evidence from histopathological data from repeated-dose studies for the category members that would indicate that these chemicals would pose a reproductive hazard to human health. In developmental toxicity studies many PGEs have been tested by various routes of exposure and in various species at significant texposure levels and show no frank developmental effects. Due to the rapid hydrolysis of
N-BUTYL ACETATE	The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.
XYLENE	The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. Reproductive effector in rats
ISOBUTANOL	Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to high concentrations of irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.
PROPYLENE GLYCOL MONOMETHYL ETHER ACETATE, ALPHA- ISOMER	for propylene glycol ethers (PGEs): Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM). Testing of a wide variety of propylene glycol ethers Testing of a wide variety of propylene glycol ethers has shown that propylene glycol-based ethers are less toxic than some ethers of the ethylene series. The common toxicities associated with

the lower molecular weight homologues of the ethylene series, such as adverse effects on reproductive organs, the developing embryo and fetus, blood (haemolytic effects), or thymus, are not seen with the commercial-grade propylene glycol ethers. In the ethylene series, metabolism of the terminal hydroxyl group produces an alkoxyacetic acid. The reproductive and developmental toxicities of the lower molecular weight homologues in the ethylene series are due specifically to the formation of methoxyacetic and ethoxyacetic acids.

Longer chain length homologues in the ethylene series are not associated with the reproductive toxicity but can cause haemolysis in sensitive species, also through formation of an alkoxyacetic acid. The predominant alpha isomer of all the PGEs (thermodynamically favored during manufacture of PGEs) is a secondary alcohol incapable of forming an alkoxypropionic acid. In contrast beta-isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects).

This alpha isomer comprises greater than 95% of the isomeric mixture in the commercial product.

Because the alpha isomer cannot form an alkoxypropionic acid, this is the most likely reason for the lack of toxicity shown by the PGEs as distinct from the lower molecular weight ethylene glycol ethers. More importantly, however, very extensive empirical test data show that this class of commercial-grade glycol ether presents a low toxicity hazard. PGEs, whether mono, di- or tripropylene glycol-based (and no matter what the alcohol group), show a very similar pattern of low to non-detectable toxicity of any type at doses or exposure levels greatly exceeding those showing pronounced effects from the ethylene series. One of the primary metabolites of the propylene glycol ethers is propylene glycol, which is of low toxicity and completely metabolised in the body.

As a class, the propylene glycol ethers are rapidly absorbed and distributed throughout the body when introduced by inhalation or oral exposure. Dermal absorption is somewhat slower but subsequent distribution is rapid. Most excretion for PGEs is via the urine and expired air. A small portion is excreted in the faeces.

As a group PGEs exhibits low acute toxicity by the oral, dermal, and inhalation routes. Rat oral LD50s range from >3,000 mg/kg (PnB) to >5,000 mg/kg (DPMA). Dermal LD50s are all > 2,000 mg/kg (PnB, & DPnB; where no deaths occurred), and ranging up to >15,000 mg/kg (TPM). Inhalation LC50 values were higher than 5,000 mg/m3 for DPMA (4-hour exposure), and TPM (1-hour exposure). For DPnB the 4-hour LC50 is >2,040 mg/m3. For PnB, the 4-hour LC50 was >651 ppm (>3,412 mg/m3), representing the highest practically attainable vapor level. No deaths occurred at these concentrations. PnB and TPM are moderately irritating to eyes while the remaining category members are only slightly irritating to nonirritating. PnB is moderately irritating to skin while the remaining category members are slightly to non-irritating None are skin sensitisers.

In repeated dose studies ranging in duration from 2 to 13 weeks, few adverse effects were found even at high exposure levels and effects that did occur were mild in nature. By the oral route of administration, NOAELs of 350 mg/kg-d (PnB – 13 wk) and 450 mg/kg-d (DPnB – 13 wk) were observed for liver and kidney weight increases (without accompanying histopathology). LOAELs for these two chemicals were 1000 mg/kg-d (highest dose tested).

Dermal repeated-dose toxicity tests have been performed for many PGEs. For PnB, no effects were seen in a 13-wk study at doses as high as 1,000 mg/kg-d. A dose of 273 mg/kg-d constituted a LOAEL (increased organ weights without histopathology) in a 13-week dermal study for DPnB. For TPM, increased kidney weights (no histopathology) and transiently decreased body weights were found at a dose of 2,895 mg/kg-d in a 90-day study in rabbits. By inhalation, no effects were observed in 2-week studies in rats at the highest tested concentrations of 3244 mg/m3 (600 ppm) for PnB and 2,010 mg/m3 (260 ppm) for DPnB. TPM caused increased liver weights without histopathology by inhalation in a 2-week study at a LOAEL of 360 mg/m3 (43 ppm). In this study, the highest tested TPM concentration, 1010 mg/m3 (120 ppm), also caused increased liver weights without accompanying histopathology. Although no repeated-dose studies are available for the oral route for TPM, or for any route for DPMA, it is anticipated that these chemicals would behave similarly to other category members. One and two-generation reproductive toxicity testing has been conducted in mice, rats, and rabbits via the oral or inhalation routes of exposure on PM and PMA. In an inhalation rat study using PM, the NOAEL for parental toxicity is 300 ppm (1106 mg/m3) with decreases in body and organ weights occurring at the LOAEL of 1000 ppm (3686 mg/m3). For offspring toxicity the NOAEL is 1000 ppm (3686 mg/m3), with decreased body weights occurring at 3000 ppm (11058 mg/m3). For PMA, the NOAEL for parental and offspring toxicity is 1000 mg/kg/d. in a two generation gavage study in rats. No adverse effects were found on reproductive organs, fertility rates, or other indices commonly monitored in such studies. In addition, there is no evidence from histopathological data from repeated-dose studies for the category members that would indicate that these chemicals would pose a reproductive hazard to human health.

In developmental toxicity studies many PGEs have been tested by various routes of exposure and in various species at significant exposure levels and show no frank developmental effects. Due to the rapid hydrolysis of DPMA to DPM, DPMA would not be expected to show teratogenic effects. At high doses where maternal toxicity occurs (e.g., significant body weight loss), an increased incidence of some anomalies such as delayed skeletal ossification or increased 13th ribs, have been reported. Commercially available PGEs showed no teratogenicity.

The weight of the evidence indicates that propylene glycol ethers are not likely to be genotoxic. *In vitro*, negative results have been seen in a number of assays for PnB, DPnB, DPMA and TPM. Positive results were only seen in 3 out of 5 chromosome aberration assays in mammalian cells with DPnB. However, negative results were seen in a mouse micronucleus assay with DPnB and PM. Thus, there is no evidence to suggest these PGEs would be genotoxic *in vivo*. In a 2-year bioassay on PM, there were no statistically significant increases in tumors in rats and mice.

A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects.

The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I]

A BASF report (in ECETOC) showed that inhalation exposure to 545 ppm PGMEA (beta isomer) was associated with a teratogenic response in rabbits; but exposure to 145 ppm and 36 ppm had no adverse effects. The beta isomer of PGMEA comprises only 10% of the commercial material, the remaining 90% is alpha isomer. Hazard appears low but emphasizes the need for care in handling this chemical. [I.C.I] *Shin-Etsu SDS

NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT For trimethylbenzenes:

Absorption of 1,2,4-trimethylbenzene occurs after oral, inhalation, or dermal exposure. Occupationally, inhalation and dermal exposures are the most important routes of absorption although systemic intoxication from dermal absorption is not likely to

occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption . 1,2,4-Trimethylbenzene is lipophilic and may accumulate in fat and fatty tissues. In the blood stream, approximately 85% of the chemical is bound to red blood cells Metabolism occurs by side-chain oxidation to form alcohols and carboxylic acids which are then conjugated with glucuronic acid, glycine, or sulfates for urinary excretion . After a single oral dose to rats of 1200 mg/kg, urinary metabolites consisted of approximately 43.2% glycine, 6.6% glucuronic, and 12.9% sulfuric acid conjugates . The two principle metabolites excreted by rabbits after oral administration of 438 mg/kg/day for 5 days were 2,4-dimethylbenzoic acid and 3,4-dimethylbippuric acid . The major routes of excretion of 1,2,4-trimethyl- benzene are

exhalation of parent compound and elimination of urinary metabolites. Half-times for urinary metabolites were reported as 9.5 hours for glycine, 22.9 hours for glucuronide, and 37.6 hours for sulfuric acid conjugates.

Acute Toxicity Direct contact with liquid 1,2,4-trimethylbenzene is irritating to the skin and breathing the vapor is irritating to the respiratory tract causing pneumonitis. Breathing high concentrations of the chemical vapor causes headache, fatigue, and drowsiness. In humans liquid 1,2,4-trimethylbenzene is irritating to the skin and inhalation of vapor causes chemical pneumonitis . High concentrations of vapor (5000-9000 ppm) cause headache, fatigue, and drowsiness . The concentration of 5000 ppm is roughly equivalent to a total of 221 mg/kg assuming a 30 minute exposure period (see end note 1). 2. Animals - Mice exposed to 8130-9140 ppm 1.2.4-trimethylbenzene (no duration given) had loss of righting response and loss of reflexes

Direct dermal contact with the chemical (no species given) causes vasodilation, erythema, and irritation (U.S. EPA). Seven of 10 rats died after an oral dose of 2.5 mL of a mixture of trimethylbenzenes in olive oil (average dose approximately 4.4 g/kg). Rats and mice were exposed by inhalation to a coal tar distillate containing about 70% 1,3,5- and 1,2,4- trimethylbenzene; no pathological changes were noted in either species after exposure to 1800-2000 ppm for up to 48 continuous hours, or in rats after 14 exposures of 8 hours each at the same exposure levels. No effects were reported for rats exposed to a mixture of trimethyl-benzenes at 1700 ppm for 10 to 21 days

Neurotoxicity 1,2,4-Trimethylbenzene depresses the central nervous system. Exposure to solvent mixtures containing the chemical causes headache, fatigue, nervousness, and drowsiness. Occupationally, workers exposed to a solvent containing 50% 1,2,4-trimethylbenzene had nervousness, headaches, drowsiness, and vertigo (U.S. EPA). Headache, fatigue, and drowsiness were reported for workers exposed (no dose given) to paint thinner containing 80% 1,2,4- and 1,3,5- trimethylbenzenes

Results of the developmental toxicity study indicate that the C9 fraction caused adverse neurological effects at the highest dose (1500 ppm) tested.

Subchronic/Chronic Toxicity Long-term exposure to solvents containing 1,2,4-trimethylbenzene may cause nervousness, tension, and bronchitis. Painters that worked for several years with a solvent containing 50% 1,2,4- and 30% 1,3,5- trimethylbenzene showed nervousness, tension and anxiety, asthmatic bronchitis, anemia, and alterations in blood clotting; haematological effects may have been due to trace amounts of benzene

Rats given 1,2,4-trimethylbenzene orally at doses of 0.5 or 2.0 g/kg/day, 5 days/week for 4 weeks. All rats exposed to the high dose died and 1 rat in the low dose died (no times given); no other effects were reported. Rats exposed by inhalation to 1700 ppm of a trimethylbenzene isomeric mixture for 4 months had decreased weight gain, lymphopenia and neutrophilia . **Genotoxicity:** Results of mutagenicity testing, indicate that the C9 fraction does not induce gene mutations in prokaryotes (Salmonella tymphimurium/mammalian microsome assay); or in mammalian cells in culture (in Chinese hamster ovary cells with and without activation). The C9 fraction does not induce chromosome mutations in Chinese hamster ovary cells with and without activation; does not induce chromosome aberrations in the bone marrow of Sprague-Dawley rats exposed by inhalation (6 hours/day for 5 days); and does not induce sister chromatid exchange in Chinese hamster ovary cells with and without activation.

Developmental/Reproductive Toxicity: A three-generation reproductive study on the C9 fraction was conducted CD rats (30/sex/group) were exposed by inhalation to the C9 fraction at concentrations of 0, 100, 500, or 1500 ppm (0, 100, 500, or 1500 mg/kg/day) for 6 hours/day, 5 days/week. There was evidence of parental and reproductive toxicity at all dose levels. Indicators of parental toxicity included reduced body weights, increased salivation, hunched posture, aggressive behavior, and death. Indicators of adverse reproductive system effects included reduced litter size and reduced pup body weight. The LOEL was 100 ppm; a no-observed-effect level was not established Developmental toxicity, including possible developmental neurotoxicity, was evident in rats in a 3-generation reproductive study

No effects on fecundity or fertility occurred in rats treated dermally with up to 0.3 mL/rat/day of a mixture of trimethylbenzenes, 4-6 hours/day, 5 days/week over one generation

For C9 aromatics (typically trimethylbenzenes - TMBs)

Acute Toxicity

Acute toxicity studies (oral, dermal and inhalation routes of exposure) have been conducted in rats using various solvent products containing predominantly mixed C9 aromatic hydrocarbons (CAS RN 64742-95-6). Inhalation LC50's range from 6,000 to 10,000 mg/m 3 for C9 aromatic naphtha and 18,000 to 24,000 mg/m3 for 1,2,4 and 1,3,5-TMB, respectively. A rat oral LD50 reported for 1,2,4-TMB is 5 grams/kg bw and a rat dermal LD50 for the C9 aromatic naphtha is >4 ml/kg bw. These data indicate that C9 aromatic solvents show that LD50/LC50 values are greater than limit doses for acute toxicity studies established under OECD test guidelines.

Irritation and Sensitization

Several irritation studies, including skin, eye, and lung/respiratory system, have been conducted on members of the category. The results indicate that C9 aromatic hydrocarbon solvents are mildly to moderately irritating to the skin, minimally irritating to the eye, and have the potential to irritate the respiratory tract and cause depression of respiratory rates in mice. Respiratory irritation is a key endpoint in the current occupational exposure limits established for C9 aromatic hydrocarbon solvents and trimethylbenzenes. No evidence of skin sensitization was identified.

Repeated Dose Toxicity

Inhalation: The results from a subchronic (3 month) neurotoxicity study and a one-year chronic study (6 hr/day, 5 days/week) indicate that effects from inhalation exposure to C9 Aromatic Hydrocarbon Solvents on systemic toxicity are slight. A battery of neurotoxicity and neurobehavioral endpoints were evaluated in the 3-month inhalation study on C9 aromatic naphtha tested at concentrations of 0, 101, 452, or 1320 ppm (0, 500, 2,220, or 6,500 mg/m3). In this study, other than a transient weight reduction in the high exposure group (not statistically significant at termination of exposures), no effects were reported on neuropathology or neuro/behavioral parameters. The NOAEL for systemic and/or neurotoxicity was 6,500

mg/m3, the highest concentration tested. In an inhalation study of a commercial blend, rats were exposed to C9 aromatic naphtha concentrations of 0, 96, 198, or 373 ppm (0, 470, 970, 1830 mg/m3) for 6 hr/day, 5 days/week, for 12 months. Liver and kidney weights were increased in the high exposure group but no accompanying histopathology was observed in these organs.

The NOAEL was considered to be the high exposure level of 373 ppm, or 1830 mg/m3. In two subchronic rat inhalation studies, both of three months duration, rats were exposed to the individual TMB isomers (1,2,4-and 1,3,5-) to nominal concentrations of 0, 25, 100, or 250 ppm (0, 123, 492, or 1230 mg/m3). Respiratory irritation was observed at 492 (100 ppm) and 1230 mg/m3 (250 ppm) and no systemic toxicity was observed in either study. For both pure isomers, the NOELs are 25 ppm or 123 mg/m3 for respiratory irritation and 250 ppm or 1230 mg/m3 for systemic effects.

Oral: The C9 aromatic naphtha has not been tested via the oral route of exposure. Individual TMB isomers have been evaluated in a series of repeated-dose oral studies ranging from 14 days to 3 months over a wide range of doses. The effects observed in these studies included increased liver and kidney weights, changes in blood chemistry, increased salivation, and decreased weight gain at higher doses. Organ weight changes appeared to be adaptive as they were not accompanied by histopathological effects. Blood changes appeared sporadic and without pattern. One study reported hyaline droplet nephropathy in male rats at the highest dose (1000 mg/kg bw-day), an effect that is often associated with alpha-2mu-globulin-induced nephropathy and not considered relevant to humans. The doses at which effects were detected were 100 mg/kg-bw day or above (an exception was the pilot 14 day oral study - LOAEL 150 mg/kg bw-day - but the follow up three month study had a LOAEL of 600 mg/kg/bw-day with a NOAEL of 200 mg/kg bw-day). Since effects generally were not severe and could be considered adaptive or spurious, oral exposure does not appear to pose a high toxicity hazard for pure trimethylbenzene isomers.

Mutagenicity

In vitro genotoxicity testing of a variety of C9 aromatics has been conducted in both bacterial and mammalian cells. In vitro point mutation tests were conducted with Salmonella typhimurium and Escherichia coli bacterial strains, as well as with cultured mammalian cells such as the Chinese hamster cell ovary cells (HGPRT assay) with and without metabolic activation. In addition, several types of in vitro chromosomal aberration tests have been performed (chromosome aberration frequency in Chinese hamster ovary and lung cells, sister chromatid exchange in CHO cells). Results were negative both with and without metabolic activation for all category members. For the supporting chemical 1,2,3-TMB, a single in vitro chromosome aberration test was weakly positive. In in vivo bone marrow cytogenetics test, rats were exposed to C9 aromatic naphtha at concentrations of 0, 153, 471, or 1540 ppm (0, 750, 2,310, or 7,560 mg/m3) 6 hr/day, for 5 days. No evidence of in vivo somatic cell genotoxicity was detected. Based on the cumulative results of these assays, genetic toxicity is unlikely for substances in the C9 Aromatic Hydrocarbon Solvents Category

Reproductive and Developmental Toxicity

Results from the three-generation reproduction inhalation study in rats indicate limited effects from C9 aromatic naphtha. In each of three generations (F0, F1 and F2), rats were exposed to High Flash Aromatic Naphtha (CAS RN 64742-95-6) via whole body inhalation at target concentrations of 0, 100, 500, or 1500 ppm (actual mean concentrations throughout the full study period were 0, 103, 495, or 1480 ppm, equivalent to 0, 505, 2430, or 7265 mg/m3, respectively). In each generation, both sexes were exposed for 10 weeks prior to and two weeks during mating for 6 hrs/day, 5 days/wks. Female rats in the F0, F1, and F2 generation were then exposed during gestation days 0-20 and lactation days 5-21 for 6 hrs/day, 7 days/wk. The age at exposure initiation differed among generations; F0 rats were exposed starting at 9 weeks of age, F1 exposure began at 5-7 weeks, and F2 exposure began at postnatal day (PND) 22. In the F0 and F1 parental generations, 30 rats/sex /group were exposed and mated. However, in the F2 generation, 40/sex/group were initially exposed due to concerns for toxicity, and 30/sex/group were randomly selected for mating, except that all survivors were used at 1480 ppm. F3 litters were not exposed directly and were sacrificed on lactation day 21.

Systemic Effects on Parental Generations:

The F0 males showed statistically and biologically significantly decreased mean body weight by ~15% at 1480 ppm when compared with controls. Seven females died or were sacrificed in extremis at 1480 ppm. The F0 female rats in the 495 ppm exposed group had a 13% decrease in body weight gain when adjusted for initial body weight when compared to controls. The F1 parents at 1480 ppm had statistically significantly decreased mean body weights (by ~13% (females) and 22% (males)), and locomotor activity. F1 parents at 1480 ppm had increased ataxia and mortality (six females). Most F2 parents (70/80) exposed to 1480 ppm died within the first week. The remaining animals survived throughout the rest of the exposure period. At week 4 and continuing through the study, F2 parents at 1480 ppm had statistically significant mean body weights much lower than controls (~33% for males; ~28% for females); body weights at 495 ppm were also reduced significantly (by 13% in males and 15% in females). The male rats in the 495 ppm exposed group had a 12% decrease in body weight gain when adjusted for initial body weight when compared to controls. Based on reduced body weight observed, the overall systemic toxicity LOAEC is 495 ppm (2430 mg/m3).

Reproductive Toxicity-Effects on Parental Generations: There were no pathological changes noted in the reproductive organs of any animal of the F0, F1, or F2 generation. No effects were reported on sperm morphology, gestational period, number of implantation sites, or post-implantation loss in any generation. Also, there were no statistically or biologically significant differences in any of the reproductive parameters, including: number of mated females, copulatory index, copulatory interval, number of females delivering a litter, number of females delivering a live litter, or male fertility in the F0 or in the F2 generation. Male fertility was statistically significantly reduced at 1480 ppm in the F1 rats. However, male fertility was not affected in the F0 or in the F2 generations; therefore, the biological significance of this change is unknown and may or may not be attributed to the test substance. No reproductive effects were observed in the F0 or F1 dams exposed to 1480 ppm (7265 mg/m3). Due to excessive mortality at the highest concentration (1480 ppm, only six dams available) in the F2 generation., a complete evaluation is precluded. However, no clear signs of reproductive toxicity were observed in the F2 generation. Therefore, the reproductive NOAEC is considered 495 ppm (2430 mg/m3), which excludes analysis of the highest concentration due to excessive mortality.

Developmental Toxicity - Effects on Pups: Because of significant maternal toxicity (including mortality) in dams in all generations at the highest concentration (1480 ppm), effects in offspring at 1480 ppm are not reported here. No significant effects were observed in the F1 and F2 generation offspring at 103 or 495 ppm. However, in F3 offspring, body weights and body weight gain were reduced by ~ 10-11% compared with controls at 495 ppm for approximately a week (PND 14 through 21). Maternal body weight was also depressed by ~ 12% throughout the gestational period compared with controls. The overall

	developmental LOAEC from this study is 495 ppm (2430 mg/m3) based on the body weights reductions observed in the F3 offspring. Conclusion: No effects on reproductive parameters were observed at any exposure concentration, although a confident assessment of the group exposed at the highest concentration was not possible. A potential developmental effect (reduction in mean pup weight and weight gain) was observed at a concentration that was also associated with maternal toxicity. Inhalation (rat) TCLo: 1320 ppm/6h/90D-I * [Devoe]			
Acute Toxicity	✓	Carcinogenicity	0	
Skin Irritation/Corrosion	v	Reproductivity	0	
Serious Eye Damage/Irritation	~	STOT - Single Exposure	~	
Respiratory or Skin sensitisation	0	STOT - Repeated Exposure	0	

Legend: 🗙

Aspiration Hazard

Data available but does not fill the criteria for classification
 Data required to make classification available

🚫 – Data Not Available to make classification

~

SECTION 12 ECOLOGICAL INFORMATION

Mutagenicity

 \bigcirc

Toxicity

Ingredient	Endpoint	Test Duration (hr)	Species	Value	Source
n-butyl acetate	EC50	48	Crustacea	=32mg/L	1
n-butyl acetate	EC50	96	Algae or other aquatic plants	1.675mg/L	3
n-butyl acetate	EC50	96	Fish	18mg/L	2
n-butyl acetate	LC50	96	Fish	18mg/L	2
n-butyl acetate	NOEC	504	Crustacea	23mg/L	2
xylene	EC50	24	Crustacea	0.711mg/L	4
xylene	LC50	96	Fish	0.0013404mg/L	4
xylene	EC50	48	Crustacea	>3.4mg/L	2
xylene	EC50	72	Algae or other aquatic plants	4.6mg/L	2
xylene	NOEC	73	Algae or other aquatic plants	0.44mg/L	2
isobutanol	EC50	48	Crustacea	ca.600mg/L	1
isobutanol	EC50	384	Crustacea	23.204mg/L	3
isobutanol	EC50	96	Algae or other aquatic plants	451.344mg/L	3
isobutanol	LC50	96	Fish	99.508mg/L	3
isobutanol	NOEC	504	Crustacea	4mg/L	5
propylene glycol monomethyl ether acetate, alpha-isomer	EC50	96	Algae or other aquatic plants	9.337mg/L	3
propylene glycol monomethyl ether acetate, alpha-isomer	LC50	96	Fish	100mg/L	1
propylene glycol monomethyl ether acetate, alpha-isomer	NOEC	336	Fish	47.5mg/L	2
propylene glycol monomethyl ether acetate, alpha-isomer	EC50	48	Crustacea	373mg/L	2
propylene glycol monomethyl ether acetate, alpha-isomer	EC50	504	Crustacea	>100mg/L	2
naphtha petroleum, light aromatic solvent	EC50	48	Crustacea	=6.14mg/L	1
naphtha petroleum, light aromatic solvent	EC10	72	Algae or other aquatic plants	1.13mg/L	1
naphtha petroleum, light aromatic solvent	EC50	72	Algae or other aquatic plants	3.29mg/L	1

naphtha petroleum, light aromatic solvent	NOEC	72	Algae or other aquatic plants	=1mg/L	1
Legend:	Extracted from 1. IU 3. EPIWIN Suite V3 Aquatic Hazard Ass Data	JCLID Toxicity Data 2. Euro 3.12 - Aquatic Toxicity Data sessment Data 6. NITE (Jap	pe ECHA Registered Substances - (Estimated) 4. US EPA, Ecotox dat. van) - Bioconcentration Data 7. MET	Ecotoxicological Information - abase - Aquatic Toxicity Data 1 (Japan) - Bioconcentration D	Aquatic Toxicity 5. ECETOC Data 8. Vendor

Harmful to aquatic organisms.

for propylene glycol ethers:

Environmental fate:

Most are liquids at room temperature and all are water-soluble.

Typical propylene glycol ethers include propylene glycol n-butyl ether (PnB); dipropylene glycol n-butyl ether (DPnB); dipropylene glycol methyl ether acetate (DPMA); tripropylene glycol methyl ether (TPM)

Environmental fate: Log octanol-water partition coefficients (log Kow's) range from 0.309 for TPM to 1.523 for DPnB. Calculated BCFs range from 1.47 for DPnB to 3.16 for DPMA and TPM, indicating low bioaccumulation. Henry's Law Constants, which indicate propensity to partition from water to air, are low for all category members, ranging from 5.7 x 10-9 atm-m3/mole for TPM to 2.7 x10-9 atm-m3/mole for PnB. Fugacity modeling indicates that most propylene glycol ethers are likely to partition roughly equally into the soil and water compartments in the environment with small to negligible amounts remaining in other environmental compartments (air, sediment, and aquatic biota). Propylene glycol ethers are unlikely to persist in the environment. Once in air, the half-life of the category members due to direct reactions with photochemically generated hydroxyl radicals, range from 2.0 hours for TPM to 4.6 hours for PnB. In water, most members of this family are "readily biodegradable" under aerobic conditions. (DPMA degraded within 28 days (and within the specified 10-day window) but only using pre-adapted or "acclimated" inoculum.). In soil, biodegradation is rapid for PM and PMA.

Ecotoxicity:

Acute aquatic toxicity testing indicates low toxicity for both ethers and acetates. For ethers, effect concentrations are > 500 mg/L. For acetates, effect concentrations are > 151 mg/L.

For 1,2,4-trimethylbenzene:

Half-life (hr) air : 0.48-16

Half-life (hr) H2O surface water : 0.24-672

Half-life (hr) H2O ground : 336-1344

Half-life (hr) soil : 168-672

Henry's Pa m3 /mol: 385-627

Bioaccumulation : not significant

1,2,4-Trimethylbenzene is a volatile organic compound (VOC) substance. As a VOC, 1,2,4-trimethylbenzene can contribute to the formation of photochemical smog in the presence of other VOCs.

Environmental fate:

Transport: ,1,2,4-Trimethylbenzene volatilises rapidly from surface waters as predicted by a Henry's law constant of 5.18 x 10-3 (vapor pressure, 2.03 mm Hg). The volatilisation half-life from a model river is calculated to be 3.4 hours. The chemical also volatilises from soils, however, based on an estimated Koc of 472, moderate adsorption to soils and sediments may occur

Transformation/Persistence

Air - Degradation of 1,2,4-trimethylbenzene in the atmosphere occurs by reaction with hydroxyl radicals Reaction also occurs with ozone but very slowly (half life, 8820 days) In the atmosphere, two estimates of the half-life are approximately 6 hours and, in the presence of hydroxyl radicals, 0.5 days **Soil** - Volatilisation is the major route of removal of 1,2,4- trimethylbenzene from soils; although, biodegradation may also occur Due to the high volatility of the chemical it is unlikely to accumulate in soil or surface water to toxic concentrations

Water - Because of 1,2,4-trimethylbenzene's water solubility and its vapor pressure of 2.03 mm Hg, the chemical will rapidly volatilise from surface waters Biodegradation of 1,2,4-trimethylbenzene occurred with inoculums from both seawater and ground water Various strains of Pseudomonas can biodegrade 1,2,4-trimethylbenzene.

Biota - The estimated bioconcentration factor (439) and high volatility of 1,2,4-trimethylbenzene indicates that bioaccumulation of the chemical will not be significant

Ecotoxicity:

Fish LC50 (96 h): fathead minnow 7.72 mg/l

No stress was observed in Oncorhynchus mykiss (rainbow trout, fingerling) or Petromyzon marinus (sea lamprey, larvae) at 5 mg/L for 24 hours Daphnia magna EC50 (48 h): 3.61 mg/l

Cancer magister (dungeness crab) LC50 996 h): 5.1 mg/l

1,2,4-Trimethylbenzene has moderate acute toxicity to aquatic organisms; acute toxicity values fall within the range of greater than 1 mg/L and 100 mg/L. LC50 values for specific aquatic organisms range from approximately 5 to 8 mg/L which is orders of magnitude greater than any measured concentration in seawater (0.002 - 0.54 microgram/L) The high concentrations required to induce toxicity in laboratory animals are not likely to be reached in the environment.

Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. For example, there is an increase in toxicity as alkylation of the naphthalene structure increases. The order of most toxic to least in a study using grass shrimp (Palaemonetes pugio) and brown shrimp (Penaeus aztecus) was dimethylnaphthalenes > methylnaphthalenes > naphthalenes.

Studies conclude that the toxicity of an oil appears to be a function of its di-aromatic and tri-aromatic hydrocarbons, which includes three-ring hydrocarbons such as phenanthrene.

The heavier (4-, 5-, and 6-ring) PAHs are more persistent than the lighter (2- and 3-ring) PAHs and tend to have greater carcinogenic and other chronic impact potential. PAHs in general are more frequently associated with chronic risks. These risks include cancer and often are the result of exposures to complex mixtures of chronic-risk aromatics (such as PAHs, alkyl PAHs, benzenes, and alkyl benzenes), rather than exposures to low levels of a single compound.

Anthrcene is a phototoxic PAH . UV light greatly increases the toxicity of anthracene to bluegill sunfish. . Benchmarks developed in the absence of UV light may be under-protective, and biological resources in strong sunlight are at more risk than those that are not.

For C9 aromatics (typically trimethylbenzene - TMBs)

Chemicals in this category possess properties indicating a hazard for the environment (acute toxicity for fish, invertebrates, and algae from 1 to 10 mg/L). Category members are readily biodegradable, except 1,3,5-trimethylbenzene (CAS RN 108-67-8). Category members are not expected to be bioaccumulative.

Environmental Fate:

In the air, category member constituents have the potential to rapidly degrade through indirect photolytic processes mediated primarily by hydroxyl radicals with calculated degradation half-lives ranging from 0.54 to 2.81 days (based on a 12-hour day and a hydroxyl radical concentration of 5x10+5). Aqueous photolysis and hydrolysis will not contribute to the transformation of category chemical constituents in aquatic environments because they are either poorly reactive or not susceptible to these reactions.

Results of the Mackay Level I environmental distribution model show that chemical constituents of C9 Aromatic Hydrocarbon Solvents Category members have the potential to partition to air (96.8 to 98.9 %), with a negligible amount partitioning to water (0.2 to 0.6%) and soil (0.9 to 2.7%). In comparison, Level III modeling indicates that category members partition primarily to soil (66.3 to 79.6%) and water (17.8 to 25.0%) compartments rather than air (2.4 to 8.4%) when an equal emission rate (1000 kg/hr) is assumed to each of the air, water, and soil compartments. When release (1000 kg/hr) is modeled only to either the air, water, or soil compartment, constituents are indicated in the modeling to partition primarily (>94%) to the compartment to which they are emitted as advection and degradation influence constituent concentration in compartments to which constituents are not released. Solvent naphtha, (pet.), light aromatic (CAS RN 64742-95-6), 1,2,4-trimethylbenzene (CAS RN 95-63-6), and 1-ethyl-3-methylbenzene (CAS RN 620-14-4) were determined to be readily biodegradable based on the studies that used the TG OECD 301F (the latter substance is used to characterize the potential biodegradability of the category member, ethylmethylbenzene (CAS RN 25550-14-5)). These three substances exceed 60%

biodegradation in 28 days and met the 10-day window criterion for ready biodegradation. In comparison 1,3,5-trimethylbenzene (CAS RN 108-67-8) was not readily biodegradable. It achieved 42% biodegradation after 28 days and 60% biodegradation after 39 days. The result for the multi-constituent substance (CAS RN 64742-95-6), a UVCB, characterizes the biodegradability of that substance as a whole, but it does not suggest that each constituent is equally biodegradable. As with all ready biodegradation test guidelines, the test system and study design used with these substances (OECD TG 301F) is not capable of distinguishing the relative contribution of the substances' constituents to the total biodegradation measured.

Based on Henry's Law constants (HLCs) representing a potential to volatilize from water that range from 590 to 1000 Pa-m3/mole, the potential to volatilize from surface waters for chemicals in the C9 Aromatic Hydrocarbon Solvents Category is expected to be high.

Based on the measured bioconcentration factors that range from 23 to 342 for 1,2,4-trimethylbenzene and 1,3,5-trimethylbenzene, the category members are not expected to be bioaccumulative.

Ecotoxicity

Acute toxicity values used to characterize this category for fish (LL50; LC50) and invertebrates (EL50; EC50) range from 3.5 to 9.2 mg/L, based on measured data. For algae, one study for a category member (CAS RN 64742-95-6) resulted in a 72-hr EC50 of 2.4 mg/L (biomass) and 2.7 mg/L (growth rate) based on measured concentrations.

The algal 72-hour NOEC (no observed effect concentration) for biomass and growth rate is 1.3 mg/L, based on mean measured concentrations. A 21-day Daphnia magna reproduction study with 1,3,5-trimethylbenzene (CAS RN 108-67-8) resulted in a NOEC value of 0.4 mg/L, based on a minimum measured value.

For xylenes : log Koc : 2.05-3.08 Koc : 25.4-204 Half-life (hr) air : 0.24-42 Half-life (hr) H2O surface water : 24-672 Half-life (hr) H2O ground : 336-8640 Half-life (hr) soil : 52-672 Henry's Pa m3 /mol: 637-879 Henry's atm m3 /mol: 7.68E-03 BOD 5 if unstated: 1.4,1% COD : 2.56,13% ThOD : 3.125 BCF : 23 log BCF : 1.17-2.41

Environmental Fate

Terrestrial fate:: Measured Koc values of 166 and 182, indicate that 3-xylene is expected to have moderate mobility in soil. Volatilisation of p-xylene is expected to be important from moist soil surfaces given a measured Henry's Law constant of 7.18x10-3 atm-cu m/mole. The potential for volatilisation of 3-xylene from dry soil surfaces may exist based on a measured vapor pressure of 8.29 mm Hg. p-Xylene may be degraded during its passage through soil). The extent of the degradation is expected to depend on its concentration, residence time in the soil, the nature of the soil, and whether resident microbial populations have been acclimated. p-Xylene, present in soil samples contaminated with jet fuel, was completely degraded aerobically within 5 days. In aquifer studies under anaerobic conditions, p-xylene was degraded, usually within several weeks, with the production of 3-methylbenzylfumaric acid, 3-methylbenzoate, and 3-methylbenzaldehyde as metabolites.

Aquatic fate: Koc values indicate that p-xylene may adsorb to suspended solids and sediment in water. p-Xylene is expected to volatilise from water surfaces based on the measured Henry's Law constant. Estimated volatilisation half-lives for a model river and model lake are 3 hours and 4 days, respectively. BCF values of 14.8, 23.4, and 6, measured in goldfish, eels, and clams, respectively, indicate that bioconcentration in aquatic organisms is low. p-Xylene in water with added humic substances was 50% degraded following 3 hours irradiation suggesting that indirect photooxidation in the presence of humic acids may play an important role in the abiotic degradation of p-xylene. Although p-xylene is biodegradable and has been observed to degrade in pond water, there are insufficient data to assess the rate of this process in surface waters. p-Xylene has been observed to degrade in anaerobic and aerobic groundwater in several studies; however, it is known to persist for many years in groundwater, at least at sites where the concentration might have been quite high.

Atmospheric fate:

Most xylenes released to the environment will occur in the atmosphere and volatilisation is the dominant environmental fate process. In the ambient atmosphere, xylenes are expected to exist solely in the vapour phase. Xylenes are degraded in the atmosphere primarily by reaction with photochemically-produced hydroxyl radicals, with an estimated atmospheric lifetime of about 0.5 to 2 days. Xylenes' susceptibility to photochemical oxidation in the troposphere is to the extent that they may contribute to photochemical smog formation.

According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and from its vapour pressure, p-xylene, is expected to exist solely as a vapour in the ambient atmosphere. Vapour-phase p-xylene is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 16 hours. A half-life of 1.0 hr in summer and 10 hr in winter was measured for the reaction of p-xylene with photochemically-produced hydroxyl radicals. p-Xylene has a moderately high photochemical reactivity under smog conditions, higher than the other xylene isomers, with loss rates varying from 9-42% per hr. The photooxidation of p-xylene results in the production of carbon monoxide, formaldehyde, glyoxal, methylglyoxal, 3-methylbenzylnitrate, m-tolualdehyde, 4-nitro-3-xylene, 5-nitro-3-xylene, 2,6-dimethylphenol, 2,6-dimethylphenol, and 4-nitro-2,6-dimethylphenol. **Ecotoxicity:**

for xylenes

Fish LC50 (96 h) Pimephales promelas 13.4 mg/l; Oncorhyncus mykiss 8.05 mg/l; Lepomis macrochirus 16.1 mg/l (all flow through values); Pimephales promelas 26.7 (static) Daphnia EC50 948 h): 3.83 mg/l Photobacterium phosphoreum EC50 (24 h): 0.0084 mg/l

Gammarus lacustris LC50 (48 h): 0.6 mg/l

For n-butyl acetate: Half-life (hr) air : 144 Half-life (hr) H2O surface water : 178-27156 Henry's atm m3 /mol: 3.20E-04 BOD 5 if unstated: 0.15-1.02,7% COD : 78% ThOD : 2.207 BCF : 4-14

Environmental Fate:

TERRESTRIAL FATE: An estimated Koc value of 200 determined from a measured log Kow of 1.78 indicates that n-butyl acetate is expected to have moderate mobility in soil. Volatilisation of n-butyl acetate is expected from moist soil surfaces given its Henry's Law constant of 2.8x10-4 atm-cu m/mole. Volatilisation from dry soil surfaces is expected based on a measured vapor pressure of 11.5 mm Hg. Using a standard BOD dilution technique and a sewage inoculum, theoretical BODs of 56 % to 86 % were observed during 5-20 day incubation periods, which suggests that n-butyl acetate may biodegrade in soil.

AQUATIC FATE: An estimated Koc value indicates that n-butyl acetate is not expected to adsorb to suspended solids and sediment in water. Butyl acetate is expected to volatilise from water surfaces based on a Henry's Law constant of 2.8x10-4 atm-cu m/mole. Estimated half-lives for a model river and model lake are 7 and 127, hours respectively. An estimated BCF value of 10 based on the log Kow, suggests that bioconcentration in aquatic organisms is low. Using a filtered sewage seed, 5-day and 20-day theoretical BODs of 58 % and 83 % were measured in freshwater dilution tests; 5-day and 20-day theoretical BODs of 50 % and 61 % were measured in salt water. A 5-day theoretical BOD of 56.8 % and 51.8 % were measured for n-butyl acetate in distilled water and seawater, respectively. Hydrolysis may be an important environmental fate for this compound based upon experimentally determined hydrolysis half-lives of 114 and 11 days at pH 8 and 9 respectively.

ATMOSPHERIC FATE: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere, n-butyl acetate, which has a vapour pressure of 11.5 mm Hg at 25 deg C, is expected to exist solely as a vapor in the ambient atmosphere. Vapour-phase n-butyl acetate is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be about 4 days

Environmental fate:

Fish LC50 (96 h, 23 C): island silverside (Menidia beryllina) 185 ppm (static bioassay in synthetic seawater, mild aeration applied after 24 h); bluegill sunfish (Lepomis macrochirus) 100 ppm (static bioassay in fresh water, mild aeration applied after 24 h)

Fish EC50 (96 h): fathead minnow (Pimephales promelas) 18 mg/l (affected fish lost equilibrium prior to death)

Daphnia LC50 (48 h): 44 ppm

Algal LC50 (96 h): Scenedesmus 320 ppm

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
n-butyl acetate	LOW	LOW
xylene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)
isobutanol	LOW (Half-life = 14.42 days)	LOW (Half-life = 4.15 days)
propylene glycol monomethyl ether acetate, alpha-isomer	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
n-butyl acetate	LOW (BCF = 14)
xylene	MEDIUM (BCF = 740)
isobutanol	LOW (LogKOW = 0.76)
propylene glycol monomethyl ether acetate, alpha-isomer	LOW (LogKOW = 0.56)

Mobility in soil

Ingredient	Mobility
n-butyl acetate	LOW (KOC = 20.86)
isobutanol	MEDIUM (KOC = 2.048)
propylene glycol monomethyl ether acetate, alpha-isomer	HIGH (KOC = 1.838)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal	 Laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: Reduction Reuse Recycling Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shell life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal. In all cases disposal to sever may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority. Recycle wherever possible. Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material). Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.
---------------------------------	---

SECTION 14 TRANSPORT INFORMATION

Labels Required

Land transport (ADG)

UN number	1263
Packing group	II
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)
Environmental hazard	Not Applicable
Transport hazard class(es)	Class 3 Subrisk Not Applicable
Special precautions for user	Special provisions 163 367 Limited quantity 5 L

Air transport (ICAO-IATA / DGR)

• •	
UN number	1263
Packing group	II Contraction of the second
UN proper shipping name	Paint (including paint, lacquer, enamel, stain, shellac, varnish, polish, liquid filler and liquid lacquer base); Paint related material (including paint thinning or reducing compounds)
Environmental hazard	Not Applicable
Transport hazard class(es)	ICAO/IATA Class3ICAO / IATA SubriskNot ApplicableERG Code3L

	Special provisions	A3 A72 A192
	Cargo Only Packing Instructions	364
Special precautions for user	Cargo Only Maximum Qty / Pack	60 L
	Passenger and Cargo Packing Instructions	353
	Passenger and Cargo Maximum Qty / Pack	5 L
	Passenger and Cargo Limited Quantity Packing Instructions	Y341
	Passenger and Cargo Limited Maximum Qty / Pack	1 L

Sea transport (IMDG-Code / GGVSee)

UN number	1263
Packing group	II
UN proper shipping name	PAINT (including paint, lacquer, enamel, stain, shellac solutions, varnish, polish, liquid filler and liquid lacquer base) or PAINT RELATED MATERIAL (including paint thinning or reducing compound)
Environmental hazard	Not Applicable
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable
Special precautions for user	EMS NumberF-E, S-ESpecial provisions163 367Limited Quantities5 L

Transport in bulk according to Annex II of MARPOL and the IBC code

solvent; isobutanol)

Y

Y

Y

Not Applicable

China - IECSC

ELINCS / NLP Japan - ENCS

Europe - EINEC /

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

N-BUTYL ACETATE(123-	86-4) IS FOUND ON THE FOLLOWING REGULATOR	{Y LISTS
Australia Exposure Stand	ustralia Exposure Standards Australia Inventory of Chemical Substances (AICS)	
Australia Hazardous Sub	stances Information System - Consolidated Lists	
XYLENE(1330-20-7) IS F	OUND ON THE FOLLOWING REGULATORY LISTS	
Australia Exposure Stand	ards	Australia Inventory of Chemical Substances (AICS)
Australia Hazardous Substances Information System - Consolidated Lists International Ager by the IARC Monc		International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs
ISOBUTANOL(78-83-1) I	S FOUND ON THE FOLLOWING REGULATORY LIS	TS
Australia Exposure Stand	ards	Australia Inventory of Chemical Substances (AICS)
Australia Hazardous Sub	stances Information System - Consolidated Lists	
PROPYLENE GLYCOL M	ONOMETHYL ETHER ACETATE, ALPHA-ISOMER(10	98-65-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS
Australia Exposure Stand	ards	Australia Inventory of Chemical Substances (AICS)
Australia Hazardous Sub	stances Information System - Consolidated Lists	
NAPHTHA PETROLEUM,	LIGHT AROMATIC SOLVENT(64742-95-6.) IS FOUN	ID ON THE FOLLOWING REGULATORY LISTS
Australia Hazardous Sub	stances Information System - Consolidated Lists	Australia Inventory of Chemical Substances (AICS)
National Inventory	Status	
Australia - AICS	Y	
Canada - DSL	Y	
Canada - NDSL	N (propylene glycol monomethyl ether acetate, al	pha-isomer; xylene; n-butyl acetate; naphtha petroleum, light aromatic

Korea - KECI	Y
New Zealand - NZIoC	Υ
Philippines - PICCS	Υ
USA - TSCA	Υ
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

Name	CAS No
propylene glycol monomethyl ether acetate, alpha-isomer	108-65-6, 142300-82-1, 84540-57-8
naphtha petroleum, light aromatic solvent	25550-14-5., 64742-95-6.

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations **OSF: Odour Safety Factor** NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors **BEI: Biological Exposure Index** This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.